
Cuckoo Cycle:

a memory-hard proof-of-work system

John Tromp

February 1, 2014

Abstract

We introduce the first trivially verifiable, scalable, memory-hard and tmto-hard proof-of-work
system.

1 Introduction

A “proof of work” (PoW) system allows a verifier to check with negligible effort that a prover has
expended a large amount of computational effort. Originally introduced as a spam fighting measure,
where the effort is the price paid by an email sender for demanding the recipient’s attention, they now
form one of the cornerstones of crypto-currencies.

Bitcoin[1] uses hashcash[2] as proof of work for new blocks of transactions, which requires finding
a nonce value such that twofold application of the cryptographic hash function SHA256 to this nonce
(and the rest of the block header) results in a number with many leading 0s. The bitcoin protocol
dynamically adjust this “difficulty” number so as to maintain a 10-minute average block interval.
Starting out at 32 leading zeroes in 2009, the number has steadily climbed and is currently at 63,
representing an incredible 263/10 double-hashes per minute. This exponential growth of hashing power
is enabled by the highly-parallellizable nature of the hashcash proof of work. which saw desktop cpus
out-performed by graphics-cards (GPUs), these in turn by field-programmable gate arrays (FPGAs),
and finally by custom designed chips (ASICs).

Downsides of this development include high investment costs, rapid obsolesence, centralization of
mining power, and large power consumption. This has led people to look for alternative proofs of work
that lack parallelizability, aiming to keep commodity hardware competitive.

Litecoin replaces the SHA256 hash function in hashcash by a single round version of the scrypt
key derivation function. It’s memory requirement of 128KB is a compromise between computation-
hardness for the prover and verification efficiency for the verifier. Although designed to be GPU-
resistant, GPUs are now a least an order of magnitude faster than CPUs for Litecoin mining, and
ASICs are have appeared on the market in early 2014.

Primecoin [3] is an interesting design based on finding long Cunningham chains of prime numbers,
using a two-step process of filtering candidates by sieving, and applying pseudo-primality tests to re-
maining candidates. The most efficient implementations are still CPU based. A downside to primecoin
is that its use of memory is not constrained much.

Adam Back [4] has a good overview of PoW papers past and present.

2 Memory latency; the great equalizer

While cpu-speed and memory bandwidth are highly variable across time and architectures, main
memory latencies have remained relatively stable. To level the mining playing field, a proof of work

1

system should be latency bound. Ideally, it should have the following properties:

verify-trivial A proof can be checked in microseconds rather than milliseconds.

scalable The amount of memory needed is a parameter that can scale arbitrarily.

linear The number of computational steps and the number of memory accesses is linear in the amount
of memory.

tmto-hard There is no time-memory trade-off—using only half as much memory should incur several
orders of magnitude slowdown.

random-access RAM is accessed randomly, making bandwidth and caches irrelevant.

parallel-hard Memory accesses cannot be effectively parallelized.

simple The algorithm should be sufficiently simple that one can be convinced of its optimality.

Combined, these properties ensure that a proof of work system is entirely constrained by main memory
latency and scales appropriately for any application.

We introduce the first proof of work system satisfying all properties, except for being parallel-
resistent at best. Amazingly, it amounts to little more than enumerating nonces and storing them in
a hashtable. While all hashtables break down when trying to store more items than it was designed to
handle, in one hashtable design in particular this breakdown is of a special nature that can be turned
into a concise and easily verified proof. Enter the cuckoo hashtable.

3 Cuckoo hashing

Introduced by Rasmus Pagh and Flemming Friche Rodler in 2001[5], a cuckoo hashtable consists of
two same-sized tables each with its own hash function mapping a key to a table location, providing two
possible locations for each key. Upon insertion of a new key, if both locations are already occupied by
keys, then one is kicked out and inserted in its alternate location, possibly displacing yet another key,
repeating the process until either a vacant location is found, or some maximum number of iterations is
reached. The latter can only happen once cycles have formed in the Cuckoo graph. This is a bipartite
graph with a node for each location and an edge for every key, connecting the two locations it can
reside at. This naturally suggests a proof of work problem, which we now formally define.

4 The proof of work function

Fix three parameters L ≤ E ≤ N in the range {4, ..., 232}, which denote the cycle length, number of
edges (also easyness, opposite of difficulty), and the number of nodes, resprectively. L and N must be
even. Function cuckoo maps any binary string h (the header) to a bipartite graph G = (V0 ∪ V1, E),
where V0 is the set of integers modulo N0 = N/2 + 1, V1 is the set of integers modulo N1 = N/2− 1,
and E has an edge between hash(h, n) mod N0 in V0 and hash(h, n) mod N1 in V1 for every nonce
0 ≤ n < E. A proof for G is a subset of L nonces whose corresponding edges form an L-cycle in G.

5 Solving a proof of work problem

We enumerate the E nonces, but instead of storing the nonce itself as a key in the Cuckoo hashtable,
we store the alternate key location at the key location, and forget about the nonce. We thus maintain
the directed cuckoo graph, in which the edge for a key is directed from the location where it resides to

2

its alternate location. The outdegree of every node in this graph is either 0 or 1, When there are no
cycles yet, the graph is a forest, a disjoint union of trees. In each tree, all edges are directed, directly,
or indirectly, to its root, the only node in the tree with outdegree 0. Addition of a new key causes
a cycle if and only if its two locations are in the same tree, which we can test by following the path
from each location to its root. In case of different roots, we reverse all edges on the shorter of the two
paths, and finally create the edge for the new key itself, thereby joining the two trees into one. In case
of equal roots, we can compute the length of the resulting cycle as 1 plus the sum of the path-lengths
to the node where the two paths first join. If the cycle length is L, then we solved the problem, and
recover the proof by enumerating nonces once more and checking which ones formed the cycle. If not,
then we keep the graph acyclic by not ignoring the key. There is some probability of overlooking other
L-cycles that uses that key, but in the important low easiness case of having few cycles in the cuckoo
graph to begin with, it does not significantly affect the rate of solution finding.

6 Implementation and performance

The C-program listed in the Appendix is also available online at https://github.com/tromp/cuckoo
together with a Makefile, proof verifier and this paper. ‘make test’ tests everything. The main program
uses 31 bits per node to represent the directed cuckoo graph, reserving the most significant bit for
marking edges on a cycle, to simplify recovery of the proof nonces. On my 3.2GHz Intel Core i5, in
case no solution is found, size 220 takes 4MB and 0.025s, size 225 takes 128MB and 2.5s, and size 230

takes 4GB and 136s, most of which is spent pointer chasing.

40 45 50 55 60 65 70

0

0.2

0.4

0.6

0.8

1 solution prob.

0 20 40 60 80 100
0

2

4

6

8

10

12
reads
writes

The left plot above shows the probability of finding a 42-cycle as a function of the percentage
edges/nodes, while the right plot shows the average number of memory reads and writes per edge as a
function of the percentage nonce/easiness (progress through main loop). Both were determined from
10000 runs at size 220; results at size 225 look almost identical. In total the program averages 3.3 reads
and 1.75 writes per edge.

7 Memory-hardness

I conjecture that this problem doesn’t allow for a time-memory trade-off. If one were to store only
a fraction p of V0 and V1, then one would have to reject a fraction p2 of generated edges, drastically
reducing the odds of finding cycles for p < 1/

√
2 (the reduction being exponential in cycle length).

There is one obvious trade-off in the other direction. By doubling the memory used, nonces can be

3

https://github.com/tromp/cuckoo

stored alongside the directed edges, which would save the effort of recovering them in the current slow
manner. The speedup falls far short of a factor 2 though, so a better use of that memory would be to
run another copy in parallel.

8 Parallelizability

To parallellize the program one could run P processing elements (PE) connected to at least P memory
elements (ME) by some multistage interconnection network. For 0 ≤ p < P , PE p processes all nonces
p mod P . Note that unless one uses at least P 2 MEs, memory routing conflicts will frequently arise.
Another problem are path conflicts, where one PE is reversing a path that another PE is either
following, or installing a new edge on. The left plot below shows the average number of times that
either of the two roots for a nonce occurred a given number of nonces ago, which suggests that there
are potentially about 10P such conflicts. Analysing how these conflicts affect performance and the
probabillity of finding cycles is a topic for further research. In any case, development of hardware for
improved parallel random access to main memory will benefit other applications too, and so one may
expect such improvements to become available on commodity hardware as well.

0 10 20 30 40 50 60
0

5

10

15

15
20
25

0 20 40 60 80 100

0

5 · 10−2

0.1

0.15

0.2

0.25 10
15
20
25

9 Choice of cycle length

Extremely small cycle lengths risk the feasability of alternative datastructures that are more memory-
efficient. For example, for L = 2 the problem reduces to finding a birthday collision, for which a
Bloom filter would be very effective, as would Rainbow tables. It seems however that the Cuckoo
representation might be optimal even for L = 4. Such small values still harm the TMTO resistance
though as mentioned in the previous paragraph. In order to keep proof size manageable, the cycle
length should not be too large either. We consider 24-64 to be a healthy range, and 42 a nice number
close to the middle of that range. The right plot above shows the distribution of cycle lengths found
for sizes 210, 215, 220, 225, as determined from 100000,100000,10000, and 10000 runs respectively. The
tails of the distributions beyond L = 100 are not shown. For reference, the longest cycle found was of
length 1726.

10 Scaling memory beyond 16-32 GB

While the current algorithm can accomodate up to N = 233 − 2 nodes by a simple change in imple-
mentation, a different idea is needed to scale beyond that. To that end, we propose to use K-partite

4

graphs with edges only between partition k and partition (k + 1) mod K, where k is fed into the hash
function along with the header and nonce. With each partition consisting of at most 231 − 1 nodes,
the most significant bit is then available to distinguish edges to the two neighbouring partitions. The
partition sizes should remain relatively prime, e.g. by picking the largest K primes under 231.

11 Conclusion

Cuckoo Cycle is an elegant proof-of-work design emphasizing memory latency. Its parallelizability
may be limited to that of multiprocessor-memory interconnection networks in general, offering hope
of leveling the mining playing field through use of commodity hardware. Future research is needed to
quantify the behaviour of multiprocessor implementations.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” May 2009. [Online]. Available:
http://www.bitcoin.org/bitcoin.pdf

[2] A. Back, “Hashcash - a denial of service counter-measure,” Tech. Rep., Mar. 1997.

[3] S. King, “Primecoin: Cryptocurrency with prime number proof-of-work,” Jul. 2013. [Online].
Available: http://primecoin.org/static/primecoin-paper.pdf

[4] A. Back, “Hashcash.org,” Feb. 2014. [Online]. Available: http://www.hashcash.org/papers/

[5] R. Pagh, N. M. Bldg, D.-A. C, and F. F. Rodler, “Cuckoo hashing,” 2001.

12 Appendix A: cuckoo.c Source Code

// Cuckoo Cycle, a memory-hard proof-of-work

// Copyright (c) 2013-2014 John Tromp

#include "cuckoo.h"

// algorithm parameters

#define MAXPATHLEN 8192

// used to simplify nonce recovery

#define CYCLE 0x80000000

int cuckoo[1+SIZE]; // global; conveniently initialized to zero

int main(int argc, char **argv) {

// 6 largest sizes 131 928 529 330 729 132 not implemented

assert(SIZE < (unsigned)CYCLE);

char *header = argc >= 2 ? argv[1] : "";

setheader(header);

printf("Looking for %d-cycle on cuckoo%d%d(\"%s\") with %d edges\n",

PROOFSIZE, SIZEMULT, SIZESHIFT, header, EASINESS);

int us[MAXPATHLEN], nu, u, vs[MAXPATHLEN], nv, v;

for (int nonce = 0; nonce < EASINESS; nonce++) {

sipedge(nonce, us, vs);

if ((u = cuckoo[*us]) == *vs || (v = cuckoo[*vs]) == *us)

continue; // ignore duplicate edges

for (nu = 0; u; u = cuckoo[u]) {

assert(nu < MAXPATHLEN-1);

us[++nu] = u;

5

http://www.bitcoin.org/bitcoin.pdf
http://primecoin.org/static/primecoin-paper.pdf
http://www.hashcash.org/papers/

}

for (nv = 0; v; v = cuckoo[v]) {

assert(nv < MAXPATHLEN-1);

vs[++nv] = v;

}

#ifdef SHOW

for (int j=1; j<=SIZE; j++)

if (!cuckoo[j]) printf("%2d: ",j);

else printf("%2d:%02d ",j,cuckoo[j]);

printf(" %x (%d,%d)\n", nonce,*us,*vs);

#endif

if (us[nu] == vs[nv]) {

int min = nu < nv ? nu : nv;

for (nu -= min, nv -= min; us[nu] != vs[nv]; nu++, nv++) ;

int len = nu + nv + 1;

printf("% 4d-cycle found at %d%%\n", len, (int)(nonce*100L/EASINESS));

if (len != PROOFSIZE)

continue;

while (nu--)

cuckoo[us[nu]] = CYCLE | us[nu+1];

while (nv--)

cuckoo[vs[nv+1]] = CYCLE | vs[nv];

for (cuckoo[*vs] = CYCLE | *us; len ; nonce--) {

sipedge(nonce, &u, &v);

int c;

if (cuckoo[c=u] == (CYCLE|v) || cuckoo[c=v] == (CYCLE|u)) {

printf("%2d %08x (%d,%d)\n", --len, nonce, u, v);

cuckoo[c] &= ~CYCLE;

}

}

break;

}

if (nu < nv) {

while (nu--)

cuckoo[us[nu+1]] = us[nu];

cuckoo[*us] = *vs;

} else {

while (nv--)

cuckoo[vs[nv+1]] = vs[nv];

cuckoo[*vs] = *us;

}

}

return 0;

}

13 Appendix B: cuckoo.h Header File

// Cuckoo Cycle, a memory-hard proof-of-work

// Copyright (c) 2013-2014 John Tromp

#include <stdio.h>

#include <stdint.h>

#include <string.h>

#include <assert.h>

#include <openssl/sha.h>

// proof-of-work parameters

#ifndef SIZEMULT

#define SIZEMULT 1

6

#endif

#ifndef SIZESHIFT

#define SIZESHIFT 20

#endif

#ifndef EASINESS

#define EASINESS (SIZE/2)

#endif

#ifndef PROOFSIZE

#define PROOFSIZE 42

#endif

#define SIZE (SIZEMULT*(1<<SIZESHIFT))

// relatively prime partition sizes

#define PARTU (SIZE/2+1)

#define PARTV (SIZE/2-1)

typedef uint64_t u64;

#define ROTL(x,b) (u64)(((x) << (b)) | ((x) >> (64 - (b))))

#define SIPROUND \

do { \

v0 += v1; v1=ROTL(v1,13); v1 ^= v0; v0=ROTL(v0,32); \

v2 += v3; v3=ROTL(v3,16); v3 ^= v2; \

v0 += v3; v3=ROTL(v3,21); v3 ^= v0; \

v2 += v1; v1=ROTL(v1,17); v1 ^= v2; v2=ROTL(v2,32); \

} while(0)

// SipHash-2-4 specialized to precomputed key and 4 byte nonces

u64 siphash24(int nonce, u64 v0, u64 v1, u64 v2, u64 v3) {

u64 b = ((u64)4) << 56 | nonce;

v3 ^= b;

SIPROUND; SIPROUND;

v0 ^= b;

v2 ^= 0xff;

SIPROUND; SIPROUND; SIPROUND; SIPROUND;

return v0 ^ v1 ^ v2 ^ v3;

}

u64 v0 = 0x736f6d6570736575ULL, v1 = 0x646f72616e646f6dULL,

v2 = 0x6c7967656e657261ULL, v3 = 0x7465646279746573ULL;

#define U8TO64_LE(p) \

(((u64)((p)[0])) | ((u64)((p)[1]) << 8) | \

((u64)((p)[2]) << 16) | ((u64)((p)[3]) << 24) | \

((u64)((p)[4]) << 32) | ((u64)((p)[5]) << 40) | \

((u64)((p)[6]) << 48) | ((u64)((p)[7]) << 56))

// derive siphash key from header

void setheader(const char *header) {

unsigned char hdrkey[32];

SHA256((unsigned char *)header, strlen(header), hdrkey);

u64 k0 = U8TO64_LE(hdrkey); u64 k1 = U8TO64_LE(hdrkey + 8);

v3 ^= k1; v2 ^= k0; v1 ^= k1; v0 ^= k0;

}

// generate edge in cuckoo graph

void sipedge(int nonce, int *pu, int *pv) {

u64 sip = siphash24(nonce, v0, v1, v2, v3);

*pu = 1 + (int)(sip % PARTU);

7

*pv = 1 + PARTU + (int)(sip % PARTV);

}

8

	Introduction
	Memory latency; the great equalizer
	Cuckoo hashing
	The proof of work function
	Solving a proof of work problem
	Implementation and performance
	Memory-hardness
	Parallelizability
	Choice of cycle length
	Scaling memory beyond 16-32 GB
	Conclusion
	Appendix A: cuckoo.c Source Code
	Appendix B: cuckoo.h Header File

