Moderately Hard, Memory-bound Functions

Martin Abadi
University of California at Santa Cruz

Abstract

A resource may be abused if its users incur little or no
cost. For example, e-mail abuseis rampant because send-
ing an e-mail has negligible cost for the sender. It has
been suggested that such abuse may be discouraged by in-
troducing an artificial cost in the form of a moderately ex-
pensive computation. Thus, the sender of an e-mail might
be required to pay by computing for a few seconds before
the e-mail is accepted. Unfortunately, because of sharp
disparities across computer systems, this approach may
be ineffective against malicious users with high-end sys-
tems, prohibitively slow for legitimate users with low-end
systems, or both. Sarting from this observation, we re-
search moderately hard functionsthat most recent systems
will evaluate at about the same speed. For this purpose,
we rely on memory-bound computations. We describe
and analyze a family of moderately hard, memory-bound
functions, and we explain how to use them for protecting
against abuses.

1. Introduction

With the increase in the number of e-mail users and
the proliferation of junk e-mail (spam), several techniques
for discouraging or filtering spam have been proposed
(e.g., [5]). In particular, Dwork and Naor suggested in
their seminal paper that a way to discourage spam is to
force senders of e-mail to pay by performing a moder-
ately expensive computation [7]. More recently, Back re-
discovered this idea and implemented it in the HashCash
system [3] (see also [4]).

Their basic scheme goes as follows. Assume that sender

S is sending an e-mail/ to recipient R. If R has previ-
ously agreed to receive e-mail from S, thikhis sent in
the normal way. Otherwise, they proceed:

e S computes some moderately-hard funct@(\/)
and send$M,G(M)) to R.

e R verifies that what it receives from S is of the
form (M,G(M)). If so, R acceptsV/. If not, R
bouncesM, possibly indicating in the bounce mes-
sage where S can obtain software for compu@iig

Mike Burrows, Mark Manasse, and Ted Wobber

Microsoft Research, Silicon Valley

The functionG() is chosen so that the verification by R
is fast, taking a millisecond, say, and so that the compu-
tation by S is fairly slow, taking at least several seconds.
Therefore, S could be (somewhat) discouraged from send-
ing M. For a spammer that wishes to send many millions
of messages, the cost of computi6f) repeatedly can
become prohibitive.

Such schemes, with refinements and extensions, have
a variety of interesting applications. For example, mod-
erately expensive computations also play a role in an-
other scheme for curbing spam, secure classification [10].
Beyond combating spam, requiring moderately expensive
computations can help in protecting against other abuses.
For example, Web indexes could require a computation
each time a user tries to add a URL to the index, thereby
limiting additions; a server could require a computation
each time a client tries to establish a connection, thereby
countering connection-depletion attacks [13]. A paper by
Jakobsson and Juels discusses several other applications
and develops a formalization of the concept of proof of
work [12].

In some cases, it is preferable that S apply a moderately
hard function to a challenge provided by R (rather than to
a particular message or request):

e S contacts R, requesting permission to use some ser-
vice.

e R returns a fresh challengseto S.
e S computesi(z) and returnsitto R.

e R verifies that what it receives is a correct response
toz. If so, R allows S to use the service.

This variant enables S to compuiéz) well before actu-
ally using the service in question.

In previous work in this area, the emphasis is on CPU-
intensive computations. In particular, Dwork and Naor
suggest CPU-intensive candidates for the functi&)
such as breaking the Fiat-Shamir signature scheme with
a low security parameter. Back’s HashCash scheme relies
on the brute-force search for partial collisions in a hash
function.

The starting point for the present paper is a simple, new memories may grow as fast as caches over the next few
observation about a problematic feature of such moder- years.
ately hard computations. Fast CPUs run much faster than The next section, section 2, further describes our ap-
slow CPUs—consider a 2.5GHz PC versus a 33MHz Palm proach; it explores a particular class of memory-bound
PDA. Moreover, in addition to high clock rates, higher- computations related to inverting functions. Section 3
end computer systems also have sophisticated pipelinegdevelops this approach into a complete method. Sec-
and other advantageous features. If a computation takegions 4 and 5 present some refinements and variants of
a few seconds on a new PC, it may take a minute on anthe method. Section 6 then investigates specific instances
old PC, and several minutes on a PDA. That seems un-of the method. Section 7 gives experimental results. Sec-
fortunate for users of old PCs, and probably unacceptabletion 8 concludes, mentioning some other related work and
for users of PDAs. While it is conceivable that service some open questions.
providers may (for a fee) perform computations on be- In our presentation, we emphasize the application of
half of users of low-end machines, such arrangements arememory-bound functions to discouraging spam. How-
not ideal. These arrangements would conflict with free e- ever, memory-bound functions are immediately appli-
mail, and may be unstable: service providers could savecable in protecting against other abuses (for example,
money and trouble by making contracts to pass e-mail be- against abusive additions of URLs to Web indexes and
tween themselves without actually performing the com- against connection-depletion attacks). In particular, a fu-
putations. So moderately hard computations may be mostture release of Microsoft's Passport system may use our
appropriate when performed by clients. Therefore, we be- functions as one of the mechanisms for controlling ac-
lieve that the disparity in client CPU speed constitutes one count creation. Memory-bound functions are also appli-
of the significant obstacles to widespread adoption of any cable for strengthening passwords. We explain this appli-
scheme based on a CPU-bound moderately hard function.cation, which is less straightforward, in section 5.

In this paper, we are concerned with finding moderately
hard functions that most computer systems will evaluate 2, Memory-bound computations: initial ideas
at about the same speed. We envision that high-end sys-)
tems might evaluate these functions somewhat faster than Ou_r approach is to force the_ sent_ﬂer S to access an un-
low-end systems, perhaps even 2—-10 times faster (but notp_redlctab_le sequence of Iocatlons_ln a large array. The
10-100 faster, as CPU disparities might imply). More- size of this array is chosen to be S|gn|f|cant_ly larger than
over, the best achievable price-performance should not bethe largest cache available; at present, the size of the array
significantly better than that of a typical legitimate client. could be 16M_B,' say.))
We believe that these ratios are egalitarian enough for the One possibility is to prescribe a computation on some
intended applications: the functions should be effective large data strL_Jcture, for example a large graph, that WOL.'Id
in discouraging abuses and should not introduce a pro- fo_rce the desired MEemory accesses. pnfortun_ately, with
hibitive delay on legitimate interactions, across a wide this strategy, the definition of the functlo_n may itself be-
range of systems. .come, rather large and hard to communicate, gnd check-

Our approach is to rely on memory-bound functions. ing S's answer may be costly. Nevertheless, this strategy

The ratios of memory latencies of machines built in the mlg\ht t?e V|ab_le. hich q . i
last five years is typically no greater than two, and almost n alternative, which we adopt, Is to prescribe a com-

always less than four. (Memory throughput tends to be put_atio_n t_hat could be done with very little memory but
less uniform, so we focus on latency.) A memory-bound Which is immensely helped by memory accesses. More

function should access locations in a large region of mem- speqﬂcally, I.EtF() be a function whpse domain and range
ory in an unpredictable way, in such a way that caches are |r_1tegers 0..(2" — 1), where,2’f Is the ntir?ber of en-
are ineffective. This strategy can work only if the largest tries in the array. Suppose thif)’s inversef” () cannot
caches are significantly smaller than the smallest memo-P€ evaluated mﬁl;ass time than & memory access, If we ask
ries across the machines of interest. Unfortunately, oneS to compute”™*() many times, then it becomes worth-

can now buy machines with 8MB caches, and some PDAs WNile for S to build a table for"~*() and to rely on the
have only 8MB of memory or less, so perhaps there is lit- table thereafter. o

tle or no room to manceuvre. On the other hand, at the The_z table can be compu_ted by applications off().

time of this writing, machines with 8MB caches are still _Bqumg thetablg also requires memory accesses, for stor-
expensive rarities, while PDAs with 64MB of memory are Ing th? table entrle_:s. However,_ these memory accesses can
fairly common. So we proceed by restricting our attention P€Nefit from batching, and their cost (like that of applying

to machines with at least 32MB of available memory. In £ ()) iS not necessarily uniform across machines. There-

light of technology commonalities, we expect that PDA fore: the cos_t of building the tablle should not be dominant
in S’s work in responding to R’s challenge. Rather, the

dominant cost should be that of performing many table of F(). This ratio is unlikely to be more than 10,

lookups. and cannot be more than 100 or so with present ma-
In order to develop these initial ideas, we first describe chines. (Here we ignore the cost of building a table

a naive embodiment and list some of its problems (sec- at S, since it should be dominated by the cost of the

tion 2.1). Then we make an interesting but imperfect im- later lookups in the table, as indicated above.)

provement (section 2.2). We design and study a complete

method later in this paper. 2.2. An improvement: chains

Chaining the applications aof'() helps in addressing
shortcomings 1 and 2 of the naive scheme. (We return
A naive embodiment of our ideas consists in letting to shortcomings 3 and 4 in later sections.) The chaining

2.1. A naive embodiment

R challenge S withk valueszy, ..., zx—1, and requir- may go as follows:
ing S to respond with their immediate pre-images, that)
is, with valuesyo, ..., yx_1 such thatF(yo) = zo, ..., e R picks a valuexo.

F(yr—1) = zp-1. R i :
; . . . computes;, by letting, for alli € 0..(k — 1),
This naive scheme is flawed, in at least four respects: * P kDY g ! ()

1. The size of the challenge is x k. While n will Tiv1 = F(i)

not be very large, becaugé" will be smaller than
the memory sizek will need to be quite large soas ~ ® Rgivesz; to S and challenges S to find.
to determine a sufficiently difficult problem. The re-
sulting size of the challenge could be on the order of
megabytes. Therefore, the challenge would be hard
to transmit to S.

The hope is that, as long 2% andk are large enough,
the fastest approach for S would be to perfdriaccesses
into a table to evaluat&—!() as many times. S should
perform these accesses in sequence, not because of in-
2. Ifthe valuesco, ...,zj_; are all presented at once, a teraction with R but because each access depends on the
brute-force search can attempt to find pre-images for Previous one. The functiof’() should be such that the
all of them at once, by computing() forward. This sequence of accesses has poor locality and is hard to pre-

search will require at mogt* computations of ()— dict, so S should not benefit from caches. Finally, the size
a large number, but probably not large enoughi If ~ of the challenger; (n bits) is smaller than in the naive
is small enoughyyo, ..., z_1 will be cached rather ~ Scheme.

than stored in memory, so this brute-force searchwill ~ This straightforward use of chains is however unsatis-
be CPU-bound and it will be faster than the expected factory. In particular, if the sequence of values produced
memory-bound computation. ifis large, sacy, . .., by successive invocations &f() contains cycles smaller
z,_1 are stored in memory, the brute-force search than2”, then S might be able to use those cycles as short-
will require memory accesses, but these can be or- cuts. On the other hand, () is a permutation with a

ganized in such a way that their cost is not uniform Single cycle of lengti2”, then S may finde, from z;,
across machines. with at mostk + 2! forward computations of’() and

On the other hand, if R presents, ..., zx_1 Se- hardly using memory:

guentially, waiting for S’s response 1 before giv- « := an arbitrary value;

ing z;11, the naive approach requires a prohibitively y = F*(2);

large numberk) of rounds of communication. while y # z, do (,y) := (F(z),F(y));
returnz

3. If R must present the challenge to S, then S is un-
able to prepare a message to be sent to R without firstin order to defeat this CPU-based solution and to eliminate
contacting R. While this interaction may be accept- cycles, we change the recurrence to depend on the step
able in some circumstances, we would like to have number by introducing a permutation. In what follows,
the option of avoiding it. One technique for avoid- we use:
ing it, which we exploit in a system currently under Ty, = F(x;) xori
development, consists in letting a trusted third party
present the challenge to S; but, in some settings, a
suitable trusted third party may not be easy to find.

Even after this correction, the design of a scheme based
on chains requires further elaboration. In particular, when
the functionF'() is not a permutation, there may be many
4. The ratio of the work done at S and R is the ratio valid responses to the challengg: there may be many

in time between a memory access and a computationz; such that the recurrencg , = F(z;) xor i yields

zj, = xx. We should specify which of thes€, are ac-
ceptable responses.

This difficulty can be addressed by generalizing from
chains to trees, as we do next. The generalization also
allows us to avoid the other shortcomings of the naive
scheme of section 2.1.

3. A complete method: trees

Building on the ideas of the previous section, we design
and study a method that relies on trees.

3.1. The method

In trying to address the shortcomings of chains, we
work with functions that are not permutations, so we need

to specify which are the acceptable responses to a chal-

lengex,. At least two approaches are viable:

e One approach is to accept not onty but all x|
such that the recurrenag, ;, = F(z}) xor i yields
x, = xy. Itis still useful to construct;, from xo,
rather than completely at random, in order to ensure
that at least one acceptable response exists. This ap
proach obviously adds to the cost of verifying a re-
sponse.

Another approach, which we prefer, is to accept only
xo, forcing S to explore a tree of pre-images rather
than a chain of pre-images. The tree has roptind
depthk. The nodes of the tree are (immediate or it-
erated) pre-images af;,. One of the leaves at depth
kis zg.

This presents a further problem, namely that S does
not know which of the many possible leaves at depth

kis R’s chosen one. S could perhaps send all of these
leaves to R, but this would add considerable commu-

nication cost. (The number of these leaves can be
fairly large.)

A solution is for R to provide S with a cheap check-
sum of the path froms, to zo. This checksum should
be such that S can tell when it has foungl yet the
checksum should not allow S to prune the space of
possibilities in advance of a search.

summary, the resulting method is as follows:

Let k£ andn be two integers, and 16t () be a function
whose domain and range are integer8.i(2™ — 1).

We suppose thdf()’s inverseF' ~() cannot be eval-
uated in less time than a memory access. We assum
thatk, n, andF() are known to both R and S, pos-

e R picks an integeg in 0..(2" —
fori € 0..(k —1):

1) and computes,

Tip1 = F(ﬂ?l) XOr ¢

and a checksum of the sequengg ..., z;. R sends
x, and this checksumto S.

e With this information, S should find, and return it
to R.

e When R receives a response from S, it simply checks
that it iszg.

We expect S to proceed as follows in order to find

e Construct a table foF" () by applying () to all
integers ind..(2™ — 1).

e Build sequencegy, ...
and such that

, Yo Starting withy, = xy

Y; € F_l(yi+1 xor Z)

(sothaty;+1 = F(y;) xor).

e Given such a sequence, retuyp if the checksum
matches.

S may build the sequences, ..., yo depth-first (hoping

to find a match early, much before building all sequences);
or S may build them breadth-first (trying to hide some of
the memory latency). In either case, S should perform
many accesses to the table for*().

Of course, S may instead adopt alternative, CPU-
intensive algorithms. However, whdn(), n, andk are
chosen appropriately, we believe that S's task is memory-
bound. In other words, those CPU-intensive algorithms
will be slower than a memory-bound solution. We do not
unfortunately have a formal proof of this conjecture. Be-
low, we give calculations that support this conjecture fo-
cusing on particular CPU-intensive algorithms.

3.2. Trees and work

The ratio of the work done at S and R is greatly im-
proved when we force S to explore a tree as explained
above. Thus, the use of trees also addresses problem 4 of
section 2.1. In this section we analyze that work ratio. We
also calculate the expected performance of S using alter-
native, CPU-intensive algorithms. We obtain some con-
straints om, k, and other parameters.

vy quadratic factor

sibly because R has chosen them and communicatedn order to characterize the work ratio, it is helpful to be

themto S.

more specific on the basic functidi(). An interesting

possibility, which we discuss further in section 6.1, is to
let F'() be a random function. (Here, and in the rest of this
paper, we say thdf() is a random function if and only if
F(z) is uniformly distributed ove®..(2™ — 1), for eachz,
and independent of ali'(y) fory # z.)

When F () is random and: < 2", the size of the tree
explored by S is quadratic ik, so S is forced to perform
far more work than R even if it takes as long to compute
F() asF~1(). Basically, the size of the tree is approx-
imately k% /2, and S needs to explore half of the tree on

algorithms—at S. We obtain some constraints:oh, and
other parameters. We indicate some precise values for pa-
rameters in section 6.2.

For simplicity, we assume that R has chodef) and
communicatedit to S; section 6.1 says more on the choice
of F(). We also rely on the quadratic ratio established
above. We assume thatis “small enough” (in partic-
ular, so that this ratio applies). Finally, we assume that
checksumming is essentially free (partly because we do
not require a strong cryptographic checksum). We write

average (with depth-first search), so S needs to evaluatef for the cost of one application df(), r for the cost of
F~1() roughlyk? /4 times on average. In contrast, R ap- one memory read (with a cache miss), anébr the cost

plies F'() only k times.

More precisely, we have made the following observa-
tion. Suppose that the functidi() on0..(2™ — 1) is ran-
dom andk < 2". Letzy be a random value and letf, be
defined by the recurrence:

Tip1 = F(.Z’z) XOr ¢

Construct a tree with roat;, and in which, ify is at depth
j < k from the root, ther is a child ofy if and only if

y=F(z) xor (k—j—1)

The expected number of leaves of this tree at dépith
approximatelyk + 1. The expected size of this tree is ap-
proximately(k +1)(k +2)/2. These numbers require that
the tree in question be constructed from same rather
than grown from a random,,: the expected size of a tree
grown from a random, is considerably smaller.

We have noticed the quadratic size of trees in experi-
ments, lettingF'() be various practical (not exactly ran-
dom) functions. Section 7 discusses these experiments
further. A posteriori, we have sketched a proof of the
guadratic size, there assuming an independent random
function at each tree level. A more sophisticated analy-
sis might be possible using tools from research on ran-
dom functions, a rich field with many theorems (see for
instance [9]).

In light of the quadratic size of trees, it is tempting to
use very deep trees, so as to increase the work ratio be-
tween S and R. There are, however, important limitations
on tree depth. At each level in a tree, S may try to in-
vert all the leaves simultaneously, somehow. When there
are enough leaves, S may benefit from cache behaviour.
Specifically, when several leaves land in the same cache
line, the cost of inverting all of them is essentially the cost
of just one memory access. These issues are particularly
clear whenk nears the size of the spac®!. We must
therefore keefr much smaller thaa™ (say, below2™>).

Some calculations

Next we derive a few simple formulas that (roughly)
characterize the work at R and—using several different

of one memory write.

e R’s costin making a challenge will essentially be that
of k applications ofF'(), thatis,k x f.

e S’s cost for building a table faF —* () will be that of:

— 2" applications off’();
— 2" insertions into the table.

Naively, this cost appears to B& x (f + w). How-
ever, for some function8'(), the cost oR™ applica-
tions of F'() may be substantially smaller thafi x f.
Similarly, the cost of insertin®™ entries may be sub-
stantially smaller tha@™ x w, because the necessary
writes can be batched and completed asynchronously
by the hardware. On the other hand, if the table struc-
ture is similar to that of a hash table, then the inser-
tions will require reads in order to resolve collisions.
These reads may make the cost of building the table
closer to2™ x (f + r). In the calculations below, we
assume that the cost 2 x (f + w) and we often
assume that = r.

e S’s cost for solving a challenge using a table for
F~1() and depth-first search will be approximately
that of k2/4 memory accesses without significant
help from caches, that i¢k?/4) x r.

e If S prefers not to use a table fét—!(), it may still
follow the same search strategy by pretending that it
has a table and by inverting() on the fly (by brute
force) whenever necessary. Provided that an inver-
sion of F'() requires2™ applications off’(), the cost
of this CPU-intensive approach will B& x 2" x f.
With a little more trouble, a CPU-intensive search
may be done only once for each level in the tree of
pre-images, with total cogt x 2™ x f.

e If S prefers not to use a table far—!(), S may
also guess;y and check its guess by applyitg).
For each guess, it has to ap#y() k times, so the
expected cost of this CPU-intensive approach will

be that of2”~! x k applications of (), that is,
kx2n=1l x f.

Along similar lines, S may appl¥() only v/% times

to each of the values iL.(2™ — 1); because of colli-
sions, roughlyz”“/\/E distinct values will remain
after this, and S may then apphy() to them(k— /%)
times (terminating half way through these applica-
tions, on average). The expected cost of this more
sophisticated (but realistic) CPU-intensive approach
will be (VE x 27 4+ 2711)k x (k = VE)/2) x f,
thatis,(2 x vk — 1) x 2" x f.

S may be able to find other optimizations of the
brute-force, CPU-intensive search fay. In particu-

lar, in order to minimize applications df(), S may

try to notice collisions after each round of applica-
tions of F'() (rather than only once aftar’k rounds).
Thus, S would apply¥'() to each of the2™ values
just once, then apply’() only once to each of their
images, and so on. S may thus requife) x 2™ ap-
plications ofF'(), wherec(k) is an affine function of
the logarithm ofk. Conceivably, this and other op-
timizations can lead to a cost ofx 2™ x f, where

¢ is a small integer (say, below 10). Note however
that this is a coarse bound on ambitious, speculative
ideas, not a measurement of an actual efficient im-
plementation: we do not know how to realize these
ideas without substantial overhead.

We arrive at the following constraints:

1. As indicated in section 2, the cost of building the ta-

ble for F~1() should not be dominant in the table-
based solution. Suppose that S amortizes a table over
p problems. Then we should have

x (k2/4) xr > 2" x (f +w)
that is,
k> 202 5 S1]p x V/(f +w)/r

This lower bound can be reduced when, as suggested
above, the cost o2™ applications of F'() and 2™
stores is smaller tha2t” x (f + w).

. We would like the table-based solution to be faster
than the CPU-intensive solutions. With the sim-
pler CPU-intensive solutions, this condition means
roughly that

E < 2ntl x

(f/r)

With the more sophisticated CPU-intensive solution
described above, however, we should have that

ko< @ x (f/r)*?

Finally, fearing that one could eventually implement
a CPU-intensive solution with costx 2™ x f, we
would want

k < 2(71/2

x \/f]rx Ve

(Here we simply ignore the cost of building a table
for F~1(), since it will be dominated by other costs.)

. We would also like that setting a challenge is much

cheaper than solving it. In other wordg;?/4) x r
should be much larger thain x f, sok should be
much larger thad x (f/r). This constraint is easily
satisfied whetk is large.

. Another constraint follows from our requirement that

F~1() cannot be evaluated in less time than a mem-
ory access. ObviouslyF~!() can be evaluated
with 2™ applications ofF'(), so we must have that
f > r/2™, butr/2™ will be tiny. A more sophisti-
cated construction permits evaluatifg* () with a
much smaller number of applications Bf), as fol-
lows [11, 8].

Forj = 1..I, S would precompute: pairs(z, hlj(:r))
whereh;(xz) = g;(F(z)) and eacly;() is an aux-
iliary function. The integersn and! should be
such that? x m is around2™ and such that x m
pairs(z, hg. (z)) can be cached. Thereforewill be

at least 2; we can force it to be larger (at least 3,
perhaps 6) by increasing the size ratio between the
smallest memory and the largest cache under consid-
eration. In order to find one immediate pre-image
of y, S would apply each functioh;() to y up tol
times, hoping to hit some precompuﬂeﬂm), then S
would reach an immediate pre-imageyoby work-

ing forward from the associated This process can

be repeated to find all immediate pre-imagesyof
with some probability [16]. Making the conservative
assumption that the applications of the functigng

are free and that there is no other overhead, S may
evaluateF'~1() intimel? x f. If S has a huge cache,
then! could conceivably be 2, so S could evaluate
F~1()intime4 x f. On the other hand, naively, S
may keep half of a table faF —*() in a cache of the
same size, and thus S may evaluate!() in time

r/2 on average. Under these assumptions, we should
require thatt x f > r/2, thatis,f > r/8.

Although these assumptions may appear fairly ex-
treme, we believe that it is safer to kegp> r/8,
and we may have to raise this bound in the future.
Fortunately, this bound is not particularly problem-
atic, as we demonstrate below.

5. On the other handf cannot be very large (or else

some of the CPU-intensive solutions can be sped up).

If applying F() naively is slower than a memory
read, then S may build a table f&i(). Many of the
accesses to the table might be organized in big linear
scans and might therefore be relatively cheap. More-
over, part of the table might be cached, even across
problems that use the same or relaf&g’s, thus fur-
ther reducing the effective cost of calculatifiyf).
Therefore, we considef < r.

In the lower bound ork (constraint 1), the value of
should correspond to a slow machine; in the upper bound
(constraint 2) and in the other constraints, to a fast ma-

chine. (We assume, pessimistically, that attackers have

of a table forF~!() need not be penalized by the
modification: it can be as fast as with the original,
faster function.

Even without this technique, we can easily accom-
modate large disparities between the speeds at which
clients may build the table. The example settings
in which fo = 100 x f; show that we can support
clients that are much slower than those accepted by
most users and current applications.

4. Refinements

Several refinements of our tree-based method are attrac-

fast machines; we can also assume that the challenges afve. We describe five in this section. The first three are

set at fast servers.) In order to avoid ambiguities, let us
call the values off on slow and fast maching and f,
respectively.

There exists a satisfactory valuefoprovided that:

2(”/2)“><\/I>< [(fo +w) < on/DH1 /ﬁx\/é
P r r

In other words, we should have:

(1/p) x ((fo +w)/r) < (fr/r) x ¢

that is,
p > (fo+w)/(fi xc)

For instance, whea = 4, w = f,, andfy, = 100 x fi,
we require roughly > 25. With these values;, = w, and
n = 22 (for a realistic memory size), we may lebe2'3.
The corresponding cost is that¥* memory accesses for
each ofp problems. Section 6.2 says more on the setting
of parameters and their consequences.

The constraints

r/8< fi <r

are easy to satisfy. In particular, as CPU speeds increase,

we can modify or replacé’() in order to slow it down
and to preserve/8 < f;. If slow machines are never
upgraded, this change will result in a larg&y, so it may
affect both the setting and the solving of challenges on
those machines, though in tolerable ways:

e Because of the quadratic factor in the work ratio,
setting challenges will remain efficient even on a
fairly slow machine. Moreover, it seems reasonable
to assume, as we do above, that setting challenge
will normally be done at fast machines such as mail
servers.

The modified functior’() may compute the images
of a variable number of inputs at the same time, as
we describe in section 6.1. In this case, the building

clearly important; the remaining two are more speculative.

Forgetting the challenge

Relying on a standard technique, we can save R from re-
memberingz, after it sends it to S. Specifically, R can
produce a keyed hasH (K, z) of zq, using a crypto-
graphically strong keyed hash functiéh[15] and a key

K known only to R, and giveé? (K, z() to S along with

the challenge. S should return bath and H (K, x), so

R can check that S’s response is correct by recomputing
H(K,zo) from K andz,.

Varying the function F()

We expect that the functiod'() will vary from time

to time, and even from challenge to challenge. It may
be freshly generated for each challenge, at random from
some family.

The variation may simply consist in xoring a different
guantity for each challenge. Thus, given a master function
MF() and an integeyf € 0..(2" — 1), R may define a new
function F'() simply by:

F(z) = MF(x) xor j

The integerj may be a challenge index (a counter) or may
be generated at random. In either case, if R and S know the
master functionMF () in advance, then R needs to trans-
mit only j to S in order to convey’'(). Moreover, as long

as MF () remains fixed, S may use a table ffF ()
instead of a table for each derived functibim (), thus
amortizing the cost of building the table fafF ~*(). The

dmaster function itself should change from time to time—

we may not trust any one function for long.

Of course, there are many other ways of defining suit-
able families of functions. We return to this matter in Sec-
tion 6.1.

Using multiple functions requires conventions for de-
scribing them, for example so that R cantell S about a new

function. If F() is derived from a master function and an Mixing functions
integer parameter (as ifi(x) = MF(z) xor j), then the
description of () might be a description of the master
function plus the parameter. The description of the master
function might simply be a short name, if it is well known,
or it might be code or a table for the function. The integer
parameter can be omitted when it is clear from context,
for instance when it is a counter.

Another way to make problems harder is to interleave ap-
plications of multiple functiong (), ..., F,.(). When R
constructs the challengg, from z,, at each step, it may
apply any of those functions. Thus, for &l 0..(k — 1),
we havez;1; = Fj(z;) xor i for somej € 0..m. S
knows Fy(), ..., Fin (), but not in which sequence R ap-
plies them, or not entirely. For instance, S may know that
R always appliedy() except that every 10 steps R ap-
plies eitherFy() or F1(). Therefore, S basically has to
R may ask S to solve several problems of the sort de- 9uess (part of) the sequence of function choices when it
scribed above, so that S has more work to do, without tries to findz,.
increasing the expected difficulty of each problem. In ad- This technique seems viable. It helps in thwarting cer-
dition to requiring more work, the use of several problems tain CPU-intensive attacks and it may yield an improve-
also gives some valuable protection against variability in mentin work ratios, at the cost of some complexity.
problem hardness.]

We may be concerned that S could amortize some work 5. Variants
across several problems and solve them all in parallel with
a CPU-intensive approach. Indeed, some flawed variants
of our method allow such dangerous amortizations. Two
twists thwart such amortization:

Using several problems as a challenge

The tree-based method can also be adapted to scenarios
in which interaction between S and R is somehow con-
strained. Next we describe two variants of the tree-based
method that address such constraints.

e As described above, the functidt{) may vary from
problem to problem. All the problems in a group may
share a master function. For instance, with functions
of the formF(z) = MF(x) xor j, the problems in
a group may all shar@/F () but each may have a
different;.

5.1. A non-interactive variant

We return to problem 3 of section 2.1, that is, we show
how to avoid requiring R to interact with S before S can
send its messag¥ .

If R (or a trusted third party) cannot present a challenge
to S, then the challenge can be defined by the meskge

e Each problem’s challenge and function description as follows.

(except the first) may be presented encrypted under a
key derived from the path to the solution of the im-
mediately preceding problem.

e S is required to apply a checksum id (or certain
parts ofM).

e Using the result as the seed to a cryptographic ran-
dom number generator, S then generates a function
F() and a start positiom, for its tree search.

Omitting bits from problems

One can often make problems harder by omitting some
bits from them. In particular, R could omit some bits of
the challenge ., of the description of the functiohR (), or
both, and S would need to guess or reconstruct the missing
bits in findingzy. For instance, R could present the full
x, and a checksum of the path fram to o, and R could

tell S thatF'() has a definition of the form

(If R or a trusted third party can provide a small, par-
tial challenge to S, then S should use it in the choice
of F() andzy.)

e S computes;, by evaluatingF'() k times, with the
recurrence:

F(x) = MF(x) xor j zip1 = F(x;) xor i

where S knowsV/F'() but not the integey; then S may
need to try many possible valuesjoiih order to findz .

Omitting bits slows down S’s memory-bound search.
On the other hand, omitting bits does not always slow
down CPU-intensive alternatives. For example, CPU-
intensive forward searches are not affected when R omits
bits fromz;, but notF'(). Therefore, such variants should
be used with caution.

e S must supply a value{ other thanz, such that
zj,, = F(z}) xor i yieldsz) = =, and that some
other property holds.

An example of such a property might be that the
checksum of the path from, to z{, be 0 mod2™
for somem. When2™ is smaller thark, it is likely
that such an{, exists. When no sucty, exists, S can
pick a newz, andF'() and try again.

If R verifies that thex{, presented by S has the prop- R also finds some(, other thanz, that also maps to

erty, and that S did not discard too many functions, x, in this way.
then R can be reasonably certain that S had to search)
a substantial fraction of the tree rootedrat e Rthen gives to S a checksum of the path frepto

xo (but neitherzg norzy), andzy.
We may choose a property that is quite hard to satisfy,])] .
so as to increase the work that S has to do in finding a ® Using P, S derivesF (), builds a table forf"~" (),

suitabler),. Despite S's additional effort, its response can usesr ade() to computery, then uses:, and the
remain small. table to findzg, that is,Q.

Alternatlvde:)y ' Shft."d S ne e(I:i to dzlmoreswork th"’lm that An attacker that tries to fing) by guessing possible val-
represented by solving a single problem, S may SOlVe SeV-,o¢ ot b il have to do a memory-bound computation

eral problems. The problems may all be independently ¢/ - 1\ <\ ,ch value. Hakl() been independent dt, this
derived fromM (each with its own functior() and its property would of course not hold. Had R transrﬁitﬁaﬁ
ownz, andzp), or they can be linked together (so the an- rather thanz,, this property would probably not hold ei-
sweray for one problem may be used in computing the ther: an attgé;ker with a wrong guess Bfwould use a
function F'() and the start positiom, for the next prob- wrong F() in constructing a tree of pre-images fof,,

lem). In either case, S should supply all the valugs and would probably get stuck rather quickly. That is why
R should provide:;,. Although findingz(, is a non-trivial
burden, R may explore only a fraction of the tree of pre-

Interestingly, some of the same ideas can be used forimages ofz;, for this purpose. Alternatively, R may be
strengthening passwords. In this application, S and R in- able to guessy, and verify that it maps toy; if the tree
teract before S does its work, but S need not respond to R.that containsey hasi leaves at depti, then R will suc-

In outline, a method for strengthening passwords goes ceed after approximatel/* /I guesses.
as follows [14, 1]. Suppose that two parties, S and R, ini- An attacker that guessés incorrectly may detect that
tially share a passworf (possibly a weak password). In this guess is incorrect, with some probability, when it fails
order to supplemen®, R picks anmn-bit password exten- to find a path with the expected checksum. This possi-
sion @, wheren is an integer parameter. Then R poses a bility may be undesirable, although the attacker may have
problem with solutior) to S. The problem should be such other, cheaper ways of detecting that its guess is incor-
that S can solve it, with moderate effort, by usifigbut rect. Soitis attractive to use only weak checksums, so that
such that) is hard to find without”. Afterwards, S and ~ Paths with the expected checksums will always be found,
R share not only? but alsoQ. In particular, S may us® or to drop checksums entirely as in the following alterna-
andQ without further interaction with R, for instance in tive protocol:
order to decrypt files that R has previously encrypted. For
password extensions longer tharbits, eachn-bit frag- (and possibly a salt and some other, public data), and
ment may be communicated separately, withas base . -

.) 4 both build a table fo" ().

password, or sequentially, with and previous fragments
as base password; the latter choice limits parallel attacks, o S and R choose random values andz r, respec-
so it seems preferable. tively, exchange them, and e = (zg Xor zg).

The previous instances of this method require a CPU-
intensive computation from S. Unfortunately, this compu- e S and R compute, by evaluating'() k times, again

5.2. Strengthening passwords

¢ S and R derive a functiof'() from the password®

tation may need to be long in order fét and () to be with the recurrence:
secure against attackers with faster CPUs. .
Next we describe an alternative instance of the method Tiy1 = F(z;) xor i
in which S performs a memory-bound computation in-) , o
stead. They then find alle(, that map tary, in this way. The

password extensio@ is a function of all these:|,
e R derives a functior'() from the password® (and (for example, a hash of all of them excef).
possibly a salt and some other, public data), chooses

ann-bit password extensiof), and letsz, be(). Here, both S and R perform the same (expensive) steps to

compute a password extension. Undoubtedly, other proto-

e R computesr;, by evaluatingF'() k times, with the cols of this form are viable.
recurrence: As usual, the cost of building tables can be amortized
over multiple searches. The multiple searches might be
xip1 = F(x;) xor i unrelated to one another; or they might all be part of the

same search for anrbit password extension (for instance, a definition like
if some bits are omitted from problems); or each search ,
might serve to find an-bit fragment of a longer password F(z) = MF(z) Xor j

extension.
(as discussed in section 4). In this case, assuming that

Lo MF () is known in advance, onlyneeds to be transmitted.
6. Instantiating the method 0 4

In this section, we describe a concrete instantiation of Approximations
our_methoq of section 3.1. _We dlscus_s the choice of a More generally,
basic functionF'(). We also discuss settings for other pa-
rameters, and their motivations and effects. F(z) =G(t,x)

we may define:

6.1. Choosing the function#'() whereG() is a suitable master function (random, or ran-
dom enough), and is a parameter. For such functions,
We would like a function#'() that can be evaluated ef- describingF() amounts to giving the correspondings
ficiently, but which nevertheless cannot be inverted in less G() is known in advance. In addition, evaluatiGg) and
time than a memory cache miss. These two constraintsthereforep() may well be cheap. These functiof¥)
are not too hard to satisfy; next we explore some particu- may share many of the advantages of true random func-

lar choices of’() and their features. tions. However, they complicate analysis.
We have investigated several candidate functibis
Random functions of this form. Some are based on functig$) from the

_) o cryptography literature: one-way hash functions such as
We would like F'() to approximate a random function, in - Mp5 and SHA, or variants of fast encryption algorithms
order to defeat caches and to obtain reasonable work ra-g ch as TEA [15]. For instance, given a valteve may
function. In this case, we envision th&t) could simply result.
be given by a table (without much attention to the random since our intended applications do not actually require
process that generated the table). much cryptographic strength, we have also investigated

The use of a random functiafi() gives rise to perfor- some faster functions'() of the same form. One is as
mance issues. Specifically, evaluating a random function fg|jows:

may not always be cheap enough. In general, each com-
putation of F'() may require a memory access, just like ~ ® Assuming that is even, lett, and¢; be two tables
each computation of —*(). The ratio between the work of 2"/2 random 32-bit numbers. Togethes, andt,
done at S and R will still be quadratic kn but without the play the role of above.

constant factor that represents the difference between the
respective costs of evaluatirig() and F ~*(). Although

the tree search performed by S forces S to perform sub-
stantially more work than R, we may want to increase this

e Let the bitstring representing be formed from the
concatenation of the bitstrings, and a;, each of
lengthn /2 bits.

difference by our choice of the functidi(). On the other e ThenletF(z) be the middle bits of the 64-bit product
hand, we may also increase this difference by raiging of the two 32-bit numbers indexed iy anda; in
the upper bound oh in section 3.2 is greater whef() is tablest, andt; :
slower.

The use of a random functioFi() also gives rise to a F'(x) = middle-bits (to[ao] * t1]a1])
storage problem. In general, R will need to have a table
for F'(). This requirement may be inconvenient. The tables, andt; have only2™/2 entries, so they will

Finally, the use of a random functidn() givesrisetoa fit in the cache on most machines. Thus, the evaluation of
communication problem. If the choice of function should F'() will take only a few cycles. In fact, this function is
change fromtime to time, then it is helpful for the function so fast that it conflicts with the conditiofi> r/8 of sec-
to have a succinct description, so that it can be communi- tion 3.2; it is easy to define slower variants of this function
cated efficiently. True random functions do not in general that satisfy the condition.
have such succinct descriptions. Therefore, we may not In an early version of our work, the two tableg and
generate and transmit a brand new, randoth for each t; were identical. That saves space for R, but enables S
challenge. Instead, we may derive a challenge-specificto use a smaller table far—!() becauseF(ap | a1) =
function F'() from a random master functialF (), with F(ay | ap). (Here, we writen | a; for the concatenation

of ap anda;.) So lettingty, andt; be identical is not at-
tractive. In that early version of our work, we also used
tables of 32-bit primes, rather than tables of arbitrary 32-
bit numbers. Primes seem to yield a somewhat bétter
but the tables are a little harder to compute. These and
other variations may be worth exploring further.

Assuming that we defing’() by letting F(x)
G(t,z) for some functionG() (either by lettingF(ao |
a;) = middle-bits (¢o[ao] * t1[a1]) Or in some other way),
we may still use a trivial definition such aB'(x)
F(z) xor j to generate other functions, or we may gener-
ate other functions by varying

The definitionF(x) = G(¢,x) can be generalized in
useful ways. IfG() yieldsn x 2° bits, whereb is a small
integer, we may appl¢() to a parameterand to the: —b
high-order bits oft, then extrac#'(z) from the result, as
well asF'(x') for everyz’ that differs fromz only in theb
low-order bits. Interestingly, this definition makes the cost
of applyingF'() to all values ir0..(2™ — 1) be the cost of
2" single applications divided bg®; this cost reduction
helps in building a table foF ~1().

6.2. Setting parameters

In order to instantiate our method, we need to pick val-
ues for various parametens, (k, f, p, ...). These choices
are constrained by the available technology, and they are

memory-bound solution (through a largey. However,
these effects cease wh¢rreaches the costof a mem-

ory read on a fast machine, because S could replace many
applications ofF'() with lookups at that point. Thus S
will pay at mostr for applying F'() on average, perhaps
much less with caching and other optimizations. In what
follows, we consider three possible values foon a fast
machine:f =r, f =r/2,andf =r/8.

In light of constraints 1 and 2 of section 3.2, we should
set the numbek of iterations aroun@'2. We have some
freedom in the setting of. A largerk will lead to more
work per problem, for both parties S and R, but with a
better (larger) ratio between the work of S and the work
of R. Conversely, a smallér will result in less work per
problem, with a smaller work ratio. Therefore, we tend
to prefer larger values fak. Whenk is too large, CPU-
intensive solutions become competitive with the table-
based approach, and their cost is not uniform across ma-
chines. Wherk is too small, the cost of building a table
for F~1() becomes dominantin the table-based approach,
and this cost is not necessarily uniform across machines.
In what follows, we proceed with = 22 if f = r, with
k=22if f =r/2, and withk = 21 if f =r/8.

Finally, we have some choice in the numbpesf prob-
lems over which a table foF ~*() should be amortized.
Generally, a largep is better, primarily because it gives
us more freedom in setting other parameters. The num-

informed by several preferences and goals. Next we dis- berp could be huge if we used a fixed function (or a fixed

cuss some settings for these parameters and their CONS€y aster function) forever

guences; many other similar settings are possible. All

However, we believe that it is
prudent to use a different function for each problem, and

these settings are viable with current machines, and theyalso to change master functions at least from time to time.

all lead to seconds or minutes of memory-bound work
for S, as intended.

Suppose that we want the table for * () to fitin 32MB
memories, but not in 8MB caches. These constraints de-
termine the possible valuesofto be 22 or 23. One might
imagine that each entry in the table will take only 3 bytes,
but such a compact encoding may be impractical. It is
more realistic to allocate 4 or 6 bytes per entry to allow
for collisions. Withn = 22, a table forF —!() will occupy
around 16MB (with 4 bytes per entry) or 24MB (more
comfortably, with 6 bytes per entry). With = 23, a
table for 71 () will occupy around 32MB (with 4 bytes
per entry) or 48MB (more comfortably, with 6 bytes per
entry), son = 23 may not be viable. In what follows,
we proceed witlm = 22 because that appears to be the
appropriate value for current machines. We recommend
increasing: as soon as cache sizes require it.

We have some choice in the coptof applying F(),
within the constraints of section 3.2. A larger value will
result in more work for R if it sets problems or checks
solutions by applying”(). A larger value should also re-
sult in more work for S if it adopts a CPU-intensive algo-
rithm, so a larger value leaves room for a more expensive

An obvious possibility is to group problems and to adopt
a new master function for each group (see section 4). We
can usually describe the master function concisely, by a
short name plus the seed to a random number generator
or a cryptographic key, in approximately 20 bytes. We
can usually describe each derived function in 0-2 bytes.
We can present each problem in 6 bytes (including the
required checksum), and each solution in 3 bytes. For
p = 128, each group of problems occupies up to 1KB,
giving rise to a visible but reasonable communication cost.
The communication cost can be drastically reduced with
the non-interactive variant of section 5, if we so wish. For
the sake of definiteness, we proceed with- 32. Each
group of 32 problems occupies only 192 bytes without
function descriptions, and a little more with them.

We expect that a machine can do rough¥ reads per
second from memory (within a small factor). On the ba-
sis of this data, we can calculate the cost of setting and
solving problems:

e With f = r andk = 2'3, we intend that S perform
224 reads per problem, so S should take 2 seconds
per problem.

Mean number of leaves Mean number of nodes
1le+08

T T T 3 T T I 5

4096 k+1 le+07 E(k+ 1)(k +2)/2 &

1024 —measured values le+06 Lmeasured values — * =

256 - 100000 E -

64] 10000 E 3

16 1000 E =

n 100 E =

4 m 10 E 3

1 | | | | | | 1 | | | | | |-

1 4 16 64 256 1024 4096 1 4 16 64 256 1024 4096
Depth of tree (k) Depth of tree (k)

Figure 1. Mean numbers of leaves and nodes in trees of depth

The setting of a problem will requi®'? applications f = r/8, those applications will cost as muchzd, 223,
of F(), which will take one millisecond on a fast ma- or 22! reads, respectively. In comparison, the memory-
chine. bound approach requir@g*, 222, and22° reads, respec-
tively.
Relying on an 8MB cache and a compact encoding, S
2?2 reads per problem, so S should take .5 Secondsmight be able to evaluaté —*() with only 4 applications
per problem. of F() [11, 8] (see section 3.2). Thus, S might replace
The setting of a problem will requiz'? applications each read with 4 applications #f() and otherwise per-
of F(), which will take .25 milliseconds on a fast form the same search as in the memory-bound approach.
machine. Whenf = r or f = r/2, this strategy does not beat a
e With f = r/8 andk = 2!, we intend that S perform CPU—iertensi_/e qlgorithm that could _so_lye each problem
920 reads per problem, so S should take .125 secondsW'th 2°* applications oiFQ, and a fortiori it doeg not beat
per problem. the memory-bound algor.lthm. Wheh= r/8, this strat-
) _ i L egy may produce a solution at the same cot'geads,
The setting of a problem will requig'" applications 55"t might appear to be faster than the memory-bound
of £(), which will take 32 microseconds on a fast igorithm. However, the memory-bound algorithm will
machine. have that same cost if S has an 8MB cache and holds there
When we multiply these costs by the number of prob- half of a table forF"~* () with a compact encoding.
lems (32), we obtain costs for solving groups of prob-
lems: 64, 16, and 4 seconds, respectively. We now check7 . Experiments
that these costs dominate the cost of building a table for
F~1(). The cost of building a table is roughly that of In this section we report on several experiments related
222 applications ofF’() and writes. On a fast machine, to our method. First, we give evidence for the claims
the writes account for a substantial part of the cost; the about tree sizes made in section 3.2. Then we show that
cost should be under one second, in any case. On a slownemory latencies vary far less than CPU speeds. Finally
machine, the applications @f() account for most of the ~ we show that the speed of our memory-bound functions
cost; the cost may go up considerably, but no higher than varies significantly less across machines than the speed of
the cost of solving a group of problems. Even if each CPU-bound functions proposed for similar purposes.
application of () were to cost as much d$ x r on a
slow machine, building a table would take under 10 sec- Tree sizes
onds. Thus, the total cost for building a table and solving
a group of problems remains within a small factor across For two functions on 22-bit integers, we found the mean
machines. number of leaves and nodes in trees formed using the
These costs compare favourably to those of solving procedure given in section 3.2. One of the functions
problems with a CPU-intensive algorithm. Suppose that was derived by calling the system (UNIX) random num-
some CPU-intensive algorithm could solve each problem ber generatoR2?? times. The other was the function
with just4 x 2™ applications off'(), that is, with just2?* F(ap | a1) = middle-bits (to[ao] * t1[a1]) discussed in
applications off’() (lettingc = 4, in the notation of sec- section 6.1, where the elementg gandt,; were obtained
tion 3.2). Depending on whethgr = r, f = /2, or from the system random number generator.

e With f = r/2 andk = 2'2, we intend that S perform

| machine| model | processor type] machine CPU-bound memory-bound
server | Dell PowerEdge 265Q Intel Pentium 4 (HashCash) (trees)
desktop | Compaq DeskPro EN Intel Pentium 3 seconds ratio | seconds ~ratio
laptop | Sony PCG-C1VN Transmeta Crusoe server=1 desktop=1
settop | GCT-AllWell Nat. Semi. server 110 1.0 24 11
STB3036N Geode GX1 desktop 140 1.3 22 1.0
PDA | Sharp SL-5500 Intel SA-1110 laptop 330 3.0 42 1.9
settop 1430 13.0 91 4.1
Table 1. The machines used in our experiments. PDA 1920 17.5 100 4.5
machine| CPU clock | memory read| approximate Table 3. The performance _of Ha_lshCa}sh and of our
frequency time price (US$) trge sletarct:_hes on thefnpach_m;as “Sﬁﬁ in 'tl':ble 1. Th?
absolute times are of less interest than the range o
Zizrs\lljgp Zlgf_'sz 8112 3;36%%0 times for a given function.
laptop | 60OMHz 0.25:s $1000
settop 233MHz 0.23us $300 machine| table build time
PDA 206MHz 0.5%s $500 seconds
server 0.9
Table 2. Machine characteristics. desktop 1.1
laptop 3.2
The results are indistinguishable for the two functions. settop 6.1
We expect similar results for other pseudo-random func- PDA >.6

tions.

We averaged over all possible starting poimts and
varied the depttk of the trees. Figure 1 shows that the
mean number of leaves in such trees closely matkhds

and that the mean number of nodes in such trees closely
matchegk + 1)(k +2)/2. Although the settop box might appear to have an attrac-

tive performance for its price, it is actually slower than its
clock speed and memory access time might suggest, partly
because it has a fairly simple pipeline. At the high end, the
Next we give experimental results for five modern ma- server has lower performance than one might expect, be-
chines that were bought in the last two years, and which cause of a complex pipeline that penalizes branching code.
cover a range of performance characteristics. All of these In general, higher clock speeds correlate with higher per-
machines are sometimes used to send e-mail—even thdormance, but the correlation is far from perfect.
settop box, which is employed as a quiet machine in a Table 3 shows the performance of a CPU-bound task
home. Table 1 lists the machines; Table 2 gives their CPU (HashCash [3]) and of our memory-bound computations
clock frequencies, memory read times, and approximate on the machines listed in Table 1. The times are rounded
prices. to two significant figures. The HashCash times are for
We obtained the memory read times by measuring the minting 100 20-bit HashCash tokens—that is, finding
time taken to follow a long linked list; the list entries were 100 independent 20-bit partial collisions in SHA-1. The
scattered widely through memory, and positioned so as tomemory-bound times are the means over 10 runs, each
ensure that each access missed in the cache. Thus, thesmnsisting of 128 depth-first tree searches, using the pa-
times include TLB miss overhead. This overhead is sub- rameters: = 22 andk = 2'!. These results do not in-
stantial on our PDA and it explains the high latency on that clude the time taken to build the table f6r—!(), which
machine, where there seems to be an additional memorywe consider next.
reference for most reads from the list. None of the ma- Table 4 shows the time taken to build the table for
chines have huge caches—the largest was on the servef ~1(). We used a straightforward implementation in
machine, which has a 512KB cache. Although the clock which each insertion of an entry into the table requires
speeds of the machines vary by a factor of 12, the mem- at least one read for resolving collisions, followed by
ory read times vary by a factor of only 4.2. This mea- a write to store the entry. We leF(ap | a1) =
surement confirms our premise that memory read laten- middle-bits (to[ao] * t1[a1]). EvaluatingF() is cheap
cies vary much less than CPU speeds. compared to a memory access; thus, most of the cost of

Table 4. Times to build the inverse table used in the
memory-bound functions.

Timings

building the table is due to the memory accesses needednuch more egalitarian across machine types than CPU-
for insertions into the table. For this function, the cost bound functions.
fis underr/8, but increasing it to-/8 does not substan- Itis possible that technology changes will result in more
tially affect these results. On each machine, the time takendiverse memory systems in the future, and then memory-
to build the table is insignificant when compared with bound functions may no longer provide an egalitarian pro-
the corresponding number in Table 3. The latter number tection against abuses. However, we have identified sev-
corresponds to 128 problems. If instead each table wereeral parametersy k, f, p, ...) that can be tuned as tech-
amortized over just 32 problems, building the table would nology evolves. We have also found a number of ideas
contribute no more than 25% of the total time of solving a and tricks that should help in adapting our approach to
group of problems. In any case, the ratio across machinesdifferent circumstances and applications.
remains under 5. The literature contains many papers that treat the space
The same executables were used on the desktop, lap+equirements of particular algorithms, cache-miss rates,
top, and settop machines. The code was compiled with and tradeoffs between time and space. Some of that work
the Intel C compiler. The executables for the server ma- has been a source of inspiration for us in seeking memory-
chine were compiled with optimization for the Pentium 4; bound functions. In particular, we remembered the clas-
performance without this specialized optimization was sic meet-in-the-middle attacks on double DES; using large
poor. The executables for the PDA were compiled with tables, these attacks are much faster than naive CPU-
gce. We used less memory (20MB) for the inverse table intensive algorithms [15]. However, these attacks can be
on the PDA, in order to make it fit in the limited space implemented with multiple passes over the key space and
available—the Sharp SL-5500 provides only 32MB of its smaller tables, so they are not necessarily limited by mem-
memory to applications and the operating system. On the ory latency. We have not come across any previous results
other machines, we used 24MB. that we could directly exploit for our purposes, though we
These experiments demonstrate several points. First,may still find some. More generally, it is desirable to in-
the effective performance of the machines varies more vestigate alternative memory-bound computations; some
than clock speed alone might indicate. This variation is are being considered [6].
the result of the faster, more expensive processors having The literature also contains some models of memory
more elaborate pipelines. Second, the desktop machinehierarchies (e.g., [2]). An interesting subject for further
is the most cost-effective one for both CPU-bound and work is to use such models in order to develop a founda-
memory-bound computations; memory-bound computa- tion for memory-bound computations, if possible proving
tions do not appear to allow attackers to benefit from the that particular computations (such as ours) are inherently
lower-cost machines. Finally, the memory-bound func- memory-bound.
tions succeed in maintaining a performance ratio between Many considerations may affect the acceptance of mod-
the slowest and fastest machines that is not much greateerately hard functions, and of memory-bound functions in
than the ratio of memory read times. particular. The problems of large-scale deployment, such
The experiments also provide validation of the approx- as software distribution and handling legacy systems, may
imate calculations of section 6.2 in which we discuss be the most challenging. In addition, as the price of com-
settings for our parameters. In that section, we assumeputer time falls, one must prescribe longer computations
a machine with a memory read time Bf23 seconds, in order to impose a given cost. For example, in order to
while these real machines have somewhat slower memo-impose a cost of one cent (well under the current cost of
ries. Once this difference is taken into account, the experi- physical bulk mail in the US), a computation of at least
mental results are largely consistent with the calculations. several minutes is required today; half an hour may be
needed in the not-too-distant future. In addition, memory-
8. Conclusions and open issues bound functions can interfere with concurrently running
_) o applications in a multitasking environment, both because
Th|.s paper is concerned with finding moderatgly hard they consume memory and because they can displace the
functions that most recent computer systems will evalu- applications’ code and data from caches. For these rea-

ate at about the same speed. Such functions can help i ons, users may not tolerate moderately hard functions,

pro_tecting against a variety of abuses. The uniformi?y of not even egalitarian ones. On the other hand, even costs
their cost across systems means that they need not iNCONE 1w one cent might be effective against some abuses,

veglencellow—ec\;j,cljegl;c!tlmat%use(;s mford_?r t?c det(ejr h'ghl' such as spam. Cache interference can be reduced by ar-
end attackers. We define and study a family of mo erateyranging that the inverse table map to a subset of the cache

hard functions whose computation can benefit crucially i\oc and it can be avoided by accessing memory with in-

from accesses to a large table in memory. Our EXPENMEN-g4 ctions that bypass the caches. Futhermore, users may
tal results indicate that these memory-bound functions are

tolerate, and perhaps not even notice, long computations[12] M. Jakobsson and A. Juels. Proofs of work and bread pud-

done asynchronously when their machines are otherwise
idle.

We rely on such asynchronous computations in an

ongoing project.

Acknowledgments

We are grateful to Dan Simon for suggesting the func-

tion

F(ap | a1) = middle-bits (t[ag] * t[a;])

wheret is a table of random 32-bit primes. We also wish
to thank Dave Conroy and Chuck Thacker for informa-
tion on memory systems; Moni Naor, for explaining prior
work on inverting functions; and Andrew Birrell, Cynthia
Dwork, Andrew Goldberg, Michael Isard, Anna Karlin,
and Adam Smith, for many interesting discussions. Most
of Martin Abadi’s work was done at Microsoft Research,
Silicon Valley, with Microsoft’s support. Mam” Abadi’s
work was also partly supported by the National Science
Foundation under Grant CCR-0208800.

References

(1]

(2]

(3]
(4]
(5]
(6]
(7]

[8] A. Fiat and M. Naor.

9]

[10]

[11]

M. Abadi, T. M. A. Lomas, and R. Needham. Strength-
ening passwords. SRC Technical Note 1997 — 033, Dig-
ital Equipment Corporation, Systems Research Center,
September/December 1997.

A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A
model for hierarchical memory. IRroceedings of the
Nineteenth Annual ACM Symposium on Theory of Com-
puting, pages 305-314, 1987.

A. Back. HashCash. Available on the web at URL
www. cypher space. or g/~ adam hashcash, 1997.
camram. camram. Available on the web at URL
WWw. canr am or g, 2002.

L. F. Cranor and B. A. LaMacchia. SpamCommunica-
tions of the ACM, 41(8):74-83, Aug. 1998.

C. Dwork, A. Goldberg, and M. Naor. On memory-bound
functions for fighting spam. Draft, 2002.

C. Dwork and M. Naor. Pricing via processing or combat-
ting junk mail. InAdvancesin Cryptology—CRYPTO ' 92,
pages 139-147. Springer, 1999.

Rigorous time/space trade-offs
for inverting functions. SAM Journal on Computing,
29(3):790-803, June 2000.

P. Flajolet and A. Odlyzko. Random mapping statistics.
In J.-J. Quisquater and J. Vandewalle, editéxdyances

in Cryptology — EUROCRYPT ' 89, volume 434 ofLec-
ture Notesin Computer Science, pages 329-354. Springer,
1990.

E. Gabber, M. Jakobsson, Y. Matias, and A. J. Mayer.
Curbing junk e-mail via secure classification. Fiman-

cial Cryptography, pages 198-213, 1998.

M. E. Hellman. A cryptanalytic time-memory trade off.
|EEE Transactions on Information Theory, IT-26(4):401—
406, 1980.

ding protocols. IrProceedings of the IFIP TC6 and TC11
Joint Working Conference on Communications and Multi-
media Security (CMS’99). Kluwer, 1999.

A. Juels and J. Brainard. Client puzzles: A cryptographic
defense against connection depletion. Phoceedings of
NDSS '99 (Networks and Distributed Systems Security),
pages 151-165, 1999.

U. Manber. A simple scheme to make passwords based
on one-way functions much harder to cra€lomputers &
Security, 15(2):171-176, 1996.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[16] M. Naor. Private communication. 2002.

